Exercise 57

(a) If $f(x)=x \sqrt{2-x^{2}}$, find $f^{\prime}(x)$.
(b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f and f^{\prime}.

Solution

Take a derivative of the given function.

$$
\begin{aligned}
f^{\prime}(x)=\frac{d f}{d x} & =\frac{d}{d x}\left(x \sqrt{2-x^{2}}\right) \\
& =\left[\frac{d}{d x}(x)\right] \sqrt{2-x^{2}}+x\left[\frac{d}{d x}\left(\sqrt{2-x^{2}}\right)\right] \\
& =(1) \sqrt{2-x^{2}}+x\left[\frac{1}{2}\left(2-x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(2-x^{2}\right)\right] \\
& =(1) \sqrt{2-x^{2}}+x\left[\frac{1}{2}\left(2-x^{2}\right)^{-1 / 2} \cdot(-2 x)\right] \\
& =\sqrt{2-x^{2}}-\frac{x^{2}}{\sqrt{2-x^{2}}} \\
& =\frac{2-x^{2}}{\sqrt{2-x^{2}}}-\frac{x^{2}}{\sqrt{2-x^{2}}} \\
& =\frac{2\left(1-x^{2}\right)}{\sqrt{2-x^{2}}}
\end{aligned}
$$

The graph of $f^{\prime}(x)$ is negative wherever $f(x)$ is decreasing, and the graph of $f^{\prime}(x)$ is positive wherever $f(x)$ is increasing.

